
REPORT

Operation Sharpshooter
Campaign Targets Global Defense, Critical Infrastructure

McAfee Advanced Threat Research

REPORT

2 Operation Sharpshooter

Operation Sharpshooter’s numerous technical links to
the Lazarus Group seem too obvious to immediately
draw the conclusion that they are responsible for the
attacks, and instead indicate a potential for false flags.
Our research focuses on how this actor operates, the
global impact, and how to detect the attack. We shall
leave attribution to the broader security community.

Have We Seen This Before?
This campaign, while masquerading as legitimate
industry job recruitment activity, gathers information
to monitor for potential exploitation. Our analysis also
indicates similar techniques associated with other job
recruitment campaigns.

This research has uncovered a new implant framework
using code from the 2015 backdoor Duuzer, which was

last seen targeting South Korea and Japan in 2015. Apart
from Rising Sun, we have seen no other variants since
that time.

Global Impact
In October and November 2018, the Rising Sun implant
has appeared in 87 organizations across the globe,
predominantly in the United States, based on McAfee
telemetry and our analysis. Based on other campaigns
with similar behavior, most of the targeted organizations
are English speaking or have an English-speaking
regional office. This actor has used recruiting as a lure
to collect information about targeted individuals of
interest or organizations that manage data related to
the industries of interest. The McAfee Advanced Threat
Research team has observed that the majority of targets
were defense and government-related organizations.

Operation Sharpshooter

The McAfee® Advanced Threat Research team and McAfee Labs Malware Operations
Group, employing McAfee® Global Threat Intelligence, have discovered a new global
campaign targeting nuclear, defense, energy, and financial companies. This campaign,
Operation Sharpshooter, leverages an in-memory implant to download and retrieve a
second-stage implant—which we call Rising Sun—for further exploitation. According to our
analysis, the Rising Sun implant uses source code from the Lazarus Group’s 2015 backdoor
Trojan Duuzer in a new framework to infiltrate these key industries.

Authors

This report was researched
and written by:

 ■ Ryan Sherstobitoff
 ■ Asheer Malhotra
 ■ Contributions from the
McAfee Advanced Threat
Research team

Connect With Us

https://www.computerworld.com/article/2998498/malware-vulnerabilities/s-korean-manufacturing-industry-targeted-with-new-backdoor-program.html
https://securingtomorrow.mcafee.com/
https://twitter.com/mcafee_business
https://www.linkedin.com/company/mcafee/
http://www.facebook.com/mcafee
http://www.youtube.com/mcafee
http://www.slideshare.net/mcafee

3 Operation Sharpshooter

REPORT

Campaign Analysis
This operation began October 25. A series of malicious
documents carried the author’s name Richard. These
documents contained Korean-language metadata,
indicating they were created with a Korean version
of Microsoft Word. All the malicious documents had
English-language job description titles for positions at
unknown companies, distributed by an IP address in
the United States and through the Dropbox service. The
documents contained a malicious macro that leveraged
embedded shellcode to inject the Sharpshooter
downloader into the memory of Word. Once the Word
process was infected, the downloader retrieved the
second-stage implant Rising Sun.

The shellcode of the downloader is 3.1KB in size and
retrieved another implant hosted at
hxxps://www.kingkoil.com.sg/query.php.

Figure 1. Targeted organizations by sector in October 2018. Colors
indicate the most prominently affected sector in each country.
Source: McAfee® Global Threat Intelligence.

4 Operation Sharpshooter

REPORT

Figure 2. Infection flow of the Rising Sun implant, which eventually
sends data to the attacker’s control servers.

5 Operation Sharpshooter

REPORT

Shellcode behavior
The shellcode executed by the Visual Basic for
Applications macro in winword.exe acts as a simple
downloader for the second-stage implant. The shellcode
takes four steps to infect the endpoint with the second-
stage payload:

1. It builds Library and API names by populating string
arrays using hardcoded bytes. (String construction
is done 1 byte at a time.) This technique is used for
constructing all strings in the shellcode, including the
control server information.

2. It resolves the Libraries and APIs using
LoadLibraryA(), GetProcAddress():

 ◆ urlmon.dll
 ◆ shfolder.dll
 ◆ ntdll.dll
 ◆ kernel32.dll
 ◆ shell32
 ◆ LoadLibraryA
 ◆ GetProcAddress
 ◆ URLDownloadToFileA
 ◆ SHGetFolderPathA
 ◆ strcpy
 ◆ strcat
 ◆ CreateProcessA
 ◆ memset
 ◆ ShellExecuteA

6 Operation Sharpshooter

REPORT

3. The implant downloads two files from its control
server:

 ◆ Second-stage payload: The second-stage binary
is downloaded from
https://www[dot]kingkoil.com.sg/query.php
to the startup folder on the endpoint:
%Startup%\mssync.exe
This step ensures persistence on the system for
the second-stage implant as part of the download
process, thereby removing the need for the second-
stage implant to set up persistence for itself.

Figure 3. The second-stage implant downloaded from the control
server.

 ◆ Second OLE (Word) document: Another OLE
document is downloaded from
https://www[dot]kingkoil.com.sg/
Strategic Planning Manager.doc
to:
%LOCALAPPDATA%\Strategic Planning
Manager.doc
This document is probably benign, used as a
decoy to hide the malicious content.

Figure 4. The decoy document downloaded from the control server.

4. Once both the second-stage implant and decoy
document have been downloaded, the two payloads
are executed:

 ◆ The second-stage implant is executed using the
CreateProcessA() API.

 ◆ The decoy document is opened using the
ShellExecuteA() with the “open” verb.

7 Operation Sharpshooter

REPORT

Figure 5. Control server strings constructed in the shellcode.

The Advanced Threat Research team discovered another
PDF document (10mins.PDF) by the same author. It
appears to be a smart phone–related questionnaire.
This document was hosted on the same server as the
two job-related malicious documents. The questionnaire
appears to come from a big data analytics company
that specializes in antifraud protection and financial
compliance.

Figure 6. 10Mins.PDF

8 Operation Sharpshooter

REPORT

Rising Sun behavior
The Rising Sun implant is a fully functional modular
backdoor that performs reconnaissance on the victim’s
network.

Imports
This implant starts by building its imports via dynamic
API resolution: LoadLibrary()/GetProcAddress(). The
library and API names are hardcoded as DWORD/WORD
values in the implant and comprise a blob of bytes 0x147
bytes in size. This blob of data is decrypted using a
simple single-byte XOR scheme with the key 0xC8.

This scheme used for building the Library and API
names is a variant of the byte-chunk string-construction
technique often used by Lazarus implants. The scheme
typically involves:

 ■ Hardcoded library and API names in the form of
DWORD/WORD/byte chunks in the implant.

 ■ Assigning variables with these hardcoded values
during the execution of the implant.

 ■ Constructing character arrays that consist of the
library and API names to be resolved.

 ■ Optionally these arrays may have to be decoded using
something as simple as a single-byte XOR decoding
scheme.

 ■ Using LoadLibrary()/GetProcAddress() to now resolve
the libraries and APIs using the constructed name
arrays.

Figure 7. XOR-encoded library and API names in the implant.

Configuration data
The configuration data used by the implant is encrypted
using an RC4 stream algorithm. The implant decrypts the
configuration data at runtime and for communicating
with the control server. The addresses decrypted from
the implant:

 ■ http://34[dot]214.99.20/view_style.php

 ■ http://137[dot]74.41.56/board.php

 ■ https://www[dot]kingkoil.com.sg/board.php

9 Operation Sharpshooter

REPORT

Figure 8. The RC4 stream encryption algorithm used to decode the
implant’s configuration data.

Initial reconnaissance
The implant fetches the following data from the endpoint
and exfiltrates it to the control server:

 ■ Network adapter info
 ■ Computer name
 ■ User name
 ■ IP address information
 ■ Native system information
 ■ OS product name from registry:
SOFTWARE\MICROSOFT\Windows NT\
CurrentVersion | ProductName

Additional configuration
The implant decrypts additional information during the
reconnaissance process:

VboxHook.dll tmp SOFTWARE\Microsoft\Windows
NT\CurrentVersion ProductName RUNAS; RUN;
DLL; winsta0\default Kernel32.dll lnk
SOFTWARE\Microsoft\Windows\CurrentVersion\
Run C:\Program Files\Internet Explorer\
iexplore exe ntuser LOG8

This configuration data is not completely used by the
implant, but there is a high possibility of other variants of
the implant using the complete configuration data. The
configuration data may have been copied from another
implant family without scrubbing unused strings from
the data.

Data encryption and exfiltration
The implant carries out data encryption and exfiltration
using the following steps:

 ■ Once the data has been gathered from the endpoint,
the implant encrypts it using the RC4 stream
encryption algorithm.

 ■ After the data has been encrypted, the implant
performs another layer of obfuscation of the data by
Base64-encoding the RC4 encrypted data.

10 Operation Sharpshooter

REPORT

The implant performs an HTTP POST request to the
control server:

 ■ https://www[dot]kingkoil.com.sg/board.php

As part of the request, the implant sends data in one of
the following formats:

 ■ boardID=<random_number>&page=<request_
type>&wr_id=<encoded_time_stamp>&session_
id=<RC4+base64 encoded data>

 ■ bo_table=<random_number>&page=<request_
type>&wr_id=<encoded_time_stamp>&session_
id=<RC4+base64 encoded data>

 ■ no=<random_number>&page=<request_
type>&wr_id=<encoded_time_stamp>&session_
id=<RC4+base64 encoded data>

The first variable in the HTTP data can be any of the
following (randomly selected) values:

var1_enum =
{
“code=”
“no=”
“bo_table=”
“boardID=”
“pageKey=”
“structureid=”
}

The <request_type> can be one of the following values:

request_type=
{
“free” //indicates initial
reconnaissance data

“query” //indicates a request to fetch
the command ID from the control server

“suggestion” //indicates request to fetch
additional data from the control server

“result” //indicates data obtained from
a command’s execution
}

11 Operation Sharpshooter

REPORT

Implant capabilities
The implant carries 14 backdoor capabilities. It receives
a command code (along with supporting data for the
command) from the control server to execute a specific
function. Unless otherwise specified, the implant sends
the output of an executed command to the control server
as an HTTP POST request with optional data in the form:

<var1_enum>=<random_number>&page=result&wr_
id=<encoded_time_stamp>&session_id=<RC4 +
Base64-encoded output of command>

Capability #1: Execute commands
Command code = 0x6D0017005500F7.

Description

The implant executes a command specified by the
control server. The command is executed using cmd.exe:

cmd.exe /c “<command> > <%temp%>\AM<random>.
tmp” 2>&1

The contents of the temporary file consist of the output
of the command executed. The temp file is read, and the
contents are subsequently sent to the control server. The
temp file is then deleted from the endpoint. This capability
also supports changing the current working directory for
the implant and natively supports specific cd commands,
without having to execute them through the shell.

Supported cd commands:

 ■ cd <directory_path>
 ■ cd.
 ■ cd\

Figure 9. Command execution using the CreateProcess() function for
cmd.exe.

12 Operation Sharpshooter

REPORT

Capability #2: Get drive information
Command code = 0x0AD005F00A300C7.

Description

For every drive on the system, the implant gets the
following information:

 ■ Drive type
 ■ Total number of bytes on disk
 ■ Total number of free bytes on disk
 ■ Name of a specified volume

Figure 10. Implant collecting drive information from the endpoint.

Capability #3: Launch process from Windows binary
Command code = 0x8300DA00C50092.

Description

 ■ Launch a process from a binary specified by the
filepath provided by the control server.

 ■ Send a buffer (size=0x400) containing repeating 0x55
to the control server if successful or 0xAA if failed.

Capability #4: Get processes information
Command code = 0x62009A001C002B.

Description

Enumerate all processes currently running and record:

 ■ Process name
 ■ Process creation time
 ■ Process exit time
 ■ Process kernel mode time
 ■ Process user mode time

Figure 11. Process related time stamps collected by the implant

13 Operation Sharpshooter

REPORT

Capability #5: Terminate process
Command Code = 0x57001D00E20060.

Description

 ■ Terminate a process specified by the control server.
 ■ The process can be specified using either:

 − Process name

 − Process ID
 ■ Send a buffer (size=0x400) containing repeating 0x55

to the control server if successful or 0xAA if failed.

Capability #6: Get file times
Command code = 0x0A3001A006E00F8.

Description

 ■ Find files based on a filename search string (for
example, *.* or *.txt)

 ■ For each file found, get the following times:

 − File creation time

 − Last access time (including read, write, or execute
operations)

Capability #7: Read file
Command code = 0x98009C0034002D.

Description

 ■ Read the contents of a file specified by the control
server and exfiltrate the contents of the file.

Figure 12. Reading a file’s contents.

14 Operation Sharpshooter

REPORT

Capability #8: Clear process memory
Command codes = 0x1800D50094008F,
0x22001A00CA005E, 0x4D00D700AC0091, and
0x0C2009200D30028.

Description

 ■ Clear a memory blob in the process by overwriting it
with junk bytes.

Capability #9: Write file to disk
Command codes = 0x8D001F00FB0061 and
0x0B700550029003C.

Description

 ■ Get a file path from the control server and create a file
corresponding to the file path.

 ■ Get content to be written to the file from the control
server by sending an HTTP POST request with HTTP
data in the format:
<var1_enum>=<random_
number>&page=suggestion&wr_id=<encoded_
time_stamp>&name=jquery2017<encoded_time_
stamp>09.css

 ■ Send a buffer (size=0x400) containing repeating 0x55
to the control server if successful or 0xAA if failed.

Figure 13. Getting file contents from the control server to create a file.

15 Operation Sharpshooter

REPORT

Capability #10: Delete file
Command code = 0x78005D008B00C6.

Description

 ■ Delete a file specified by the control server if it is not a
directory.

 ■ Send a buffer (size=0x400) containing repeating 0x55
to the control server if successful or 0xAA if failed.

Capability #11: Get additional file information for files
in a directory
Command code = 0x0D0057005B00C4.

Description

 ■ If the file path specified is a directory, then enumerate
all files in the directory and send to the control server,
including:

 − File size

 − File attributes

 − File creation time
 ■ If the file path is not a directory (regular file), then the

implant fetches a DWORD pointed to by offset 0x3C in
the file.

 − This parses MZ (executable) files, in particular where
the location of IMAGE_NT_HEADERS is specified at
offset 0x3C.

 − The implant reads the compile date of the MZ files
by reading the time stamp (DWORD) at IMAGE_NT_
SIGNATURE + 0x08.

 ■ The implant also records other data about MZ files:

 − File attributes

 − File size

 − File creation time

 − Last access time

 − File write time

 − MZ compile time

Figure 14. Implant reading the compilation timestamp of a specified MZ
(Windows executable) file.

16 Operation Sharpshooter

REPORT

Capability #12: Connect to an IP address
Command code = 0x0B700150099005C.

Description

 ■ Tests a connection to a specified network IP address
over a specified port number.

 ■ The implant only attempts to connect to the network
address.

 ■ Based on the connection attempt, sends a buffer
(size=0x400) containing repeating 0x55 to the control
server if successful or 0xAA if failed.

Capability #13: Change file attributes
Command code = 0x0EC001700B2005D.

Description

 ■ Modifies the following file information based on the
content specified by the control server:

 − File attributes (hidden, system, etc.)

 − If the file is an MZ, then the compile time stamp of
the file is also modified in the PE header.

 − If the file is not an MZ, then the implant can move
the file to a different location after modifying its
attributes.

Figure 15. Implant modifying the attributes and file times for a file.

Capability #14: Variant of change file attributes
(capability #13)
Command code = 0x0E200D2007C008E.

Description

 ■ Changes file attributes (hidden, system, etc.) and
moves the file to a different location.

17 Operation Sharpshooter

REPORT

Attribution
Attributing an attack to any threat group is often
riddled with challenges, including potential “false flag”
operations by other threat actors. Technical evidence
alone is not sufficient to attribute this activity with
high confidence. However, based on our analysis, this
operation shares multiple striking similarities with other
the Lazarus Group attacks; thus we present them for
further analysis. Although these similarities point to
Lazarus, we also must consider the possibility of false
flags.

 ■ The malicious Word documents were created in a
Korean-language environment. (The code page is in
Korean.)

 ■ The implant uses a variant of the dynamic API
resolution technique we have observed with multiple
Lazarus implants.

 ■ The operation is very similar to a Lazarus operation
from 2017 that targeted the US defense and energy
sectors. The techniques, tactics, and procedures
match those in this previous operation.

 ■ Rising Sun is an evolution of the Lazarus backdoor
Duuzer, which was circulated in 2015 and targeted
South Korea.

Comparing Rising Sun to Duuzer
The Advanced Threat Research team found that Rising
Sun shares code with the Duuzer implant family, which
was identified by the security community as belonging to
Lazarus. We compared the following samples and detail
their similarities and differences.

Samples used for comparison:

 ■ Rising Sun: f3bd9e1c01f2145eb475a98c87f94a25
 ■ Duuzer: 73471f41319468ab207b8d5b33b0b4be

Configuration data
Although the decryption schemes used by Rising Sun
and Duuzer are different, both implants use similar
configuration data used to drive their reconnaissance
capabilities:

Configuration data
decoded by Duuzer

Configuration data
decoded by Rising Sun

VboxHook.dll
tmp SOFTWARE\
Microsoft\Windows
NT\CurrentVersion
ProductName RUNAS;
RUN; DLL; winsta0\
default Kernel32.
dll lnk SOFTWARE\
Microsoft\Windows\
CurrentVersion\Run
perfd000 dat

VboxHook.dll
tmp SOFTWARE\
Microsoft\Windows
NT\CurrentVersion
ProductName RUNAS;
RUN; DLL; winsta0\
default Kernel32.
dll lnk SOFTWARE\
Microsoft\Windows\
CurrentVersion\Run
C:\Program Files\
Internet Explorer\
iexplore exe ntuser
LOG8

18 Operation Sharpshooter

REPORT

Library/API resolution
Both implants use the same technique of constructing
and decoding library and API names for dynamic API
resolution. We explained this technique (a variant of
byte-chunk library/API name construction) in a preceding
section. Although the encoded data blob consisting of
the library/API strings in Duuzer is 0x181 bytes in size
and is decoded using 0x30 as the XOR key, the encoded
data blob in Rising Sun is 0x147 bytes in size and is
decoded using 0xC8 as the XOR key.

Figure 16. Duuzer string blob (at left) compared to a Rising Sun string
blob.

Figure 17. Matching Duuzer (at left) and Rising Sun data blob decoding
schemes.

Library names
Another similarity between the two implant families
is that some of the decoded library names consist of
randomized characters. For example, Duuzer capitalizes
random characters of the following library name:

 ■ uSEr32.dlL

Rising Sun does something similar in these library
names:

 ■ vErsIon.dll
 ■ advapI32.dLL

19 Operation Sharpshooter

REPORT

Similarities between Rising Sun and Duuzer
The implant families are a direct match in several
capabilities as well as in the code structure and API
use to implement these capabilities. The following
capabilities are a direct match:

Initial reconnaissance (gather preliminary system
info)
Both implants capture the same information from the
endpoint during their initial reconnaissance. The order
of information and the API/code signatures are an exact
match.

Information captured by both implants:

 ■ Network adapter info
 ■ Computer name
 ■ User name
 ■ IP address information
 ■ Native system information
 ■ OS product name from registry:
SOFTWARE\MICROSOFT\Windows NT\
CurrentVersion | ProductName

Figure 18. Similarities in Duuzer (at left) and Rising Sun in their
preliminary reconnaissance code.

20 Operation Sharpshooter

REPORT

Capability #1: Execute commands
Both implants can execute commands using cmd.exe
with the output redirected to a temp file on the
endpoint:

 ■ cmd.exe /c “<command> > <%temp%>\<Temp_
File_Prefix><random>.tmp” 2>&1

Both implants support changing directories natively,
without having to execute cd commands through the
shell. Supported cd commands:

 ■ cd <directory_path>

 ■ cd.

 ■ cd\

Figure 19. Duuzer (at left) and Rising Sun show similar code signatures
for executing commands.

Figure 20. Similar “cd” command checks in Duuzer (at left) and Rising Sun.

21 Operation Sharpshooter

REPORT

Capability #2: Get drive information
Both implants gather the same data using similar code
signatures:

 ■ Drive type
 ■ Total number of bytes on disk
 ■ Total number of free bytes on disk
 ■ Name of a specified volume

Figure 21. Similar code signature and drive information gathered by
Duuzer (at left) and Rising Sun.

Capability #3: Launch a process from Windows binary
Both implants use the same API and flags to launch new
processes on the endpoint.

Capability #4: Get processes information
Both implants exfiltrate the exact same process
information:

 ■ Process name
 ■ Process creation time
 ■ Process exit time
 ■ Process kernel mode time
 ■ Process user mode time

Figure 22. Duuzer’s (at left) and Rising Sun’s process time information
gathering code signatures.

Capability #5: Terminate process
Both implants support the capability to terminate a
process running on the system based on either the:

 ■ Process Name
 ■ Process ID

22 Operation Sharpshooter

REPORT

Capability #6: Get file times
Both implants implement the same capabilities:

 ■ Find files based on a filename search string (for
example, *.* or *.txt)

 ■ For each file found, get the following times:

 − File creation time

 − Last access time (including read, write, or execute
operations)

Figure 23. Similarities in Duuzer’s (at left) and Rising Sun’s code for
gathering file times.

Capability #7: Read a file
Both implants can read the contents of a file specified by
the control server and exfiltrate the contents of the file.

Capability #8: Clear process memory
There are no significant similarities between the two
implants.

Capability #9: Write a file to disk
Both implants can write content served by the control
server to a file on disk (with file path also specified by the
control server) using the same sequence of actions:

 ■ Get a file path from the control server and create a file
corresponding to the file path.

 ■ Fetch content to be written to the file from the control
server using the implant-specific communication
mechanism.

 ■ Once the content has been written to the file path,
send either a success or a failure response to the
control server.

Capability #10: Delete file
Both implants can delete a file specified by the control
server if it is not a directory.

Figure 24. Similarities in Duuzer’s (at left) and Rising Sun’s code for
deleting a file.

23 Operation Sharpshooter

REPORT

Capability #11: Get additional file information for files
in a directory
Both implants have the same capability to get file
information for files in a specified directory, including the
following data:

 ■ File attributes
 ■ File size
 ■ File creation time
 ■ Last access time
 ■ File write time
 ■ MZ compile time

Figure 25. Similar code between Duuzer (at left) and Rising Sun for
reading the MZ’s compile time stamp.

Capability #12: Connect to an IP address
Both implants test connections to a specified IP address
using the same actions, APIs, and code signatures:

 ■ Test a connection to a specified network IP address
over a specified port number.

 ■ Only attempt to connect to the network address.
 ■ Based on the connection attempt, send either a

success or a failure response to the control server.

Capability #13: Change file attributes
Both implants can modify the same file attributes:

 ■ File attributes (hidden, system, etc.)
 ■ If the file is an MZ, then the compile time stamp of the

file is also modified in the PE header.

Figure 26. Similar code used by both Duuzer (at left) and Rising Sun to
modify file attributes and times.

Capability #14: Variant of change file attributes
Both implants can change file attributes and move the
file to a different location.

24 Operation Sharpshooter

REPORT

Differences between Rising Sun and Duuzer
There are some notable differences in implementation
between the two families.

Communication mechanism: Duuzer uses a simple
socket-based communication mechanism to send and
receive data from its control server. Rising Sun uses
an HTTP-based mechanism. This difference may be an
enhancement by the attackers because masking the
control server communication is more effective against
detection by the human eye and network intrusion
prevention systems. High-level differences in the
communication mechanisms:

 ■ Communication schemes (native socket vs. HTTP).
 ■ Command codes used to indicate a specific capability
 ■ Return codes/data indicating success or failure of a

command’s execution

Encoding schemes: Apart from the library and API
name construction and decoding, the encryption
schemes used in the implant are quite different. While
Duuzer uses a custom XOR scheme to decode its
configuration data, Rising Sun uses the RC4 stream
algorithm.

Conclusion
Our discovery of a new, high-function implant is
another example of how targeted attacks attempt to
gain intelligence. The malware moves in several steps.
The initial attack vector is a document that contains a
weaponized macro to download the next stage, which
runs in memory and gathers intelligence. The victim’s
data is sent to a control server for monitoring by the
actors, who then determine the next steps.

We have not previously observed this implant. Based
on our telemetry, we discovered that multiple victims
from different industry sectors around the world have
reported these indicators. Operation Sharpshooter’s
similarities to Lazarus Group malware are striking, but
that does not ensure attribution. Was this attack just
a first-stage reconnaissance operation, or will there be
more? We will continue to monitor this campaign and
will report further when we or others in the security
industry receive more information. The McAfee
Advanced Threat Research team encourages our
peers to share their insights and attribution of who is
responsible for Operation Sharpshooter.

25 Operation Sharpshooter

REPORT

Indicators of Compromise
MITRE ATT&CK™ techniques

 ■ Account discovery
 ■ File and directory discovery
 ■ Process discovery
 ■ System network configuration discovery
 ■ System information discovery
 ■ System network connections discovery
 ■ System time discovery
 ■ Automated exfiltration
 ■ Data encrypted
 ■ Exfiltration over command and control channel
 ■ Commonly used port
 ■ Process injection

Hashes
 ■ 8106a30bd35526bded384627d8eebce15da35d17
 ■ 66776c50bcc79bbcecdbe99960e6ee39c8a31181
 ■ 668b0df94c6d12ae86711ce24ce79dbe0ee2d463
 ■ 9b0f22e129c73ce4c21be4122182f6dcbc351c95
 ■ 31e79093d452426247a56ca0eff860b0ecc86009

Control servers
 ■ 34.214.99.20/view_style.php
 ■ 137.74.41.56/board.php
 ■ kingkoil.com.sg/board.php

Document URLs
 ■ hxxp://208.117.44.112/document/Strategic Planning

Manager.doc
 ■ hxxp://208.117.44.112/document/Business Intelligence

Administrator.doc
 ■ hxxp://www.dropbox.com/s/2shp23ogs113hnd/

Customer Service Representative.doc?dl=1

McAfee detection
 ■ RDN/Generic Downloader.x
 ■ Rising-Sun
 ■ Rising-Sun-DOC

About McAfee
McAfee is the device-to-cloud cybersecurity company.
Inspired by the power of working together, McAfee
creates business and consumer solutions that make our
world a safer place. By building solutions that work with
other companies’ products, McAfee helps businesses
orchestrate cyber environments that are truly integrated,
where protection, detection, and correction of threats
happen simultaneously and collaboratively. By protecting
consumers across all their devices, McAfee secures their
digital lifestyle at home and away. By working with other
security players, McAfee is leading the effort to unite
against cybercriminals for the benefit of all.

www.mcafee.com.

McAfee and the McAfee logo are trademarks or registered trademarks of McAfee, LLC or its subsidiaries in the US and other countries.
Other marks and brands may be claimed as the property of others. MITRE ATT&CK and ATT&CK are trademarks of The MITRE Corporation.
Copyright © 2018 McAfee, LLC. 4197_1218
DECEMBER 2018

2821 Mission College Blvd.
Santa Clara, CA 95054
888.847.8766
www.mcafee.com

26 Operation Sharpshooter

About McAfee Labs and Advanced Threat
Research
McAfee Labs, led by McAfee Advanced Threat
Research, is one of the world’s leading sources for
threat research, threat intelligence, and cybersecurity
thought leadership. With data from millions of sensors
across key threats vectors—file, web, message, and
network—McAfee Labs and McAfee Advanced Threat
Research deliver real-time threat intelligence, critical
analysis, and expert thinking to improve protection and
reduce risks.

www.mcafee.com/us/mcafee-labs.aspx.

http://www.mcafee.com
http://www.mcafee.com
http://www.mcafee.com/us/mcafee-labs.aspx

